
230



Chapter 16

New types and templates

16.1 Definition by choices

In Exercise 15.1.4, the contract said the input and output types were both string. This
is a bit over-simplified. In fact, the input is supposed to be one of three possibilities, and
the output will also be one of three possibilities.

In a sense, we’ve invented two new data types greeting and answer :

; A greeting is one of the strings "good morning",

; "good afternoon", or "good night"

; An answer is one of the strings "I need coffee",

; "I need a nap", or "bedtime!"

; reply : greeting -> answer

; test cases as before

; definition as before

This may not seem important yet, but thinking of the input and the output as new
data types actually helps us write the program. Since the input and output types are both
three-way choices, there must be at least three test cases — one for each possibility —
and the body of the method is probably a three-clause conditional. Furthermore, if we
ever write another function that takes in or returns the greeting or answer type, it too
will need at least three test cases, and its body will probably also involve a three-clause
conditional.

The notion of defining a new data type as one of a specified set of choices is called
“definition by choices”. The predefined Boolean type can also be thought of as defined
by choices: it has two choices, true and false, and as we’ve already seen, any function
that returns a Boolean should have at least two test cases, one returning true and one
returning false.

16.2 Inventories and templates

Suppose we were writing several functions that each took in a greeting, but all returned
different kinds of things. The examples and function definitions would all look pretty
similar: there would be three examples, using "good morning", "good afternoon", and

231



232 CHAPTER 16. NEW TYPES AND TEMPLATES

"good night" respectively, and the function definition would involve a conditional with
three clauses, each question comparing the parameter with a different one of these strings.

Since so much of the code is identical from one function to another, it might save
time to write the identical part once and for all. We’ll put it in #| ...|# comments, for
reasons that will become clear shortly.

#|

(check-expect (function-on-greeting "good morning") ...)

(check-expect (function-on-greeting "good afternoon") ...)

(check-expect (function-on-greeting "good night") ...)

(define (function-on-greeting greeting)

; greeting a greeting, as defined above

(cond [(string=? greeting "good morning") ...]

[(string=? greeting "good afternoon") ...]

[(string=? greeting "good night") ...]

))

|#

This isn’t a “real” function, obviously — the answers to the cond-clauses aren’t filled in,
and we don’t even know what types they should be, much less the right answers — but
rather a template for functions that take in a greeting. The template includes everything
we can say about the function and its test cases just by knowing the input data type.

Now, every time you want to write a real function that takes in that data type, simply
copy-and-paste everything between the #| and |#, change the name of the function, and
you’re 90% done.

Worked Exercise 16.2.1 Write a template for functions that operate on bank bal-
ances, as defined in Exercise 15.4.1.

Then use this template to write two functions: bank-interest-rate (as before)
and customer-type, which categorizes customers as "rich", "moderate", "poor", or
"college student" depending on the size of their bank account, using the same dividing
lines.

Solution: We’ll start by defining the new data type bank-balance:

; A bank-balance is a number, in one of the categories

; 0-500 (not including 500); 500-1000 (not including 1000);

; 1000-4000 (not including 4000); and 4000-up.

Obviously, there are four choices. The template looks like



16.2. INVENTORIES AND TEMPLATES 233

#|

(check-expect (function-on-bank-balance 200) ...)

(check-expect (function-on-bank-balance 500) ...)

(check-expect (function-on-bank-balance 800) ...)

(check-expect (function-on-bank-balance 1000) ...)

(check-expect (function-on-bank-balance 2000) ...)

(check-expect (function-on-bank-balance 4000) ...)

(check-expect (function-on-bank-balance 7500) ...)

(define (function-on-bank-balance balance)

; balance a bank-balance

(cond [(< balance 500) ...]

[(and (>= balance 500)

(< balance 1000) ...]

[(and (>= balance 1000)

(< balance 4000) ...]

[(>= balance 4000) ...]

))

|#

The contract for bank-interest is

; bank-interest-rate : bank-balance ->

number (either 0, 0.01, 0.02, or 0.03)

Next, copy-and-paste the template and change the name of the function:

(check-expect ( bank-interest-rate 200) ...)

(check-expect ( bank-interest-rate 500) ...)

(check-expect ( bank-interest-rate 800) ...)

(check-expect ( bank-interest-rate 1000) ...)

(check-expect ( bank-interest-rate 2000) ...)

(check-expect ( bank-interest-rate 4000) ...)

(check-expect ( bank-interest-rate 7500) ...)

(define ( bank-interest-rate balance)

; balance a bank-balance

(cond [(< balance 500) ...]

[(and (>= balance 500)

(< balance 1000) ...]

[(and (>= balance 1000)

(< balance 4000) ...]

[(>= balance 4000) ...]

))

Replace the ... in the examples with the right answers for the problem you’re trying
to solve:



234 CHAPTER 16. NEW TYPES AND TEMPLATES

(check-expect (bank-interest-rate 200) 0.00)

(check-expect (bank-interest-rate 500) 0.01)

(check-expect (bank-interest-rate 800) 0.01)

(check-expect (bank-interest-rate 1000) 0.02)

(check-expect (bank-interest-rate 2000) 0.02)

(check-expect (bank-interest-rate 4000) 0.03)

(check-expect (bank-interest-rate 7500) 0.03)

Finally, replace the ... in the cond-clause answers with the right answers for the
problem you’re trying to solve:

(define (bank-interest-rate balance)

; balance a bank-balance

(cond [(< balance 500) 0.00 ]

[(and (>= balance 500)

(< balance 1000) 0.01 ]

[(and (>= balance 1000)

(< balance 4000) 0.02 ]

[(>= balance 4000) 0.03 ]

))

This should pass all its tests.

Now for customer-type. The contract is

; customer-type : bank-balance -> string

; ("rich", "moderate", "poor", or "college student")

By copying the template and changing the function name, we get

(check-expect ( customer-type 200) ...)

(check-expect ( customer-type 500) ...)

(check-expect ( customer-type 800) ...)

(check-expect ( customer-type 1000) ...)

(check-expect ( customer-type 2000) ...)

(check-expect ( customer-type 4000) ...)

(check-expect ( customer-type 7500) ...)

(define ( customer-type balance)

; balance a bank-balance

(cond [(< balance 500) ...]

[(and (>= balance 500)

(< balance 1000) ...]

[(and (>= balance 1000)

(< balance 4000) ...]

[(>= balance 4000) ...]

))

We fill in the right answers in the examples:



16.3. OUTVENTORIES AND TEMPLATES 235

(check-expect (customer-type 200) "college student")

(check-expect (customer-type 500) "poor")

(check-expect (customer-type 800) "poor")

(check-expect (customer-type 1000) "moderate")

(check-expect (customer-type 2000) "moderate")

(check-expect (customer-type 4000) "rich")

(check-expect (customer-type 7500) "rich")

and then in the body of the function:

(define ( customer-type balance)

; balance a bank-balance

(cond [(< balance 500) "college student" ]

[(and (>= balance 500)

(< balance 1000) "poor" ]

[(and (>= balance 1000)

(< balance 4000) "moderate" ]

[(>= balance 4000) "rich" ]

))

This should pass all its test cases.

16.3 Outventories and templates

Likewise, suppose we were writing several functions that each returned an answer. They
would probably all look like
#|

(check-expect (function-returning-answer ...) "I need coffee")

(check-expect (function-returning-answer ...) "I need a nap")

(check-expect (function-returning-answer ...) "bedtime!")

(define (function-returning-answer whatever)

(cond [... "I need coffee"]

[... "I need a nap"]

[... "bedtime!"]

))

|#

Again, this obviously isn’t a “real function”, since this time the questions aren’t filled in;
it’s only a template for functions that return a result of a particular type. It doesn’t have
an inventory, since we don’t even know what type the input is, but it has what we might
call an “outventory”: the expressions likely to be needed to construct the right kind of
answer.

Whereas an “inventory” answers the question “what am I given, and what can I do
with it?”, an “outventory” answers the question “what do I need to produce, and how can
I produce it?”. To use the cooking analogy, the “outventory” for a batch of cookies would
involve observing that the last step of the process is baking, so we’d better find a cookie
sheet and preheat the oven. Just as one can write a template based on an inventory, one
can also write a template based on an outventory.



236 CHAPTER 16. NEW TYPES AND TEMPLATES

When you’re writing a real function, you may have to choose between a template based
on the input type and one based on the output type. In general, use the more complicated
one. If the input type is more complicated than the output type, its template will be
more detailed so you’ll have less work left to do yourself. On the other hand, if the output
type is more complicated than the input type (which happens less often), you should use
an output-based template because it’ll do more of the work for you.

16.4 Else and definition by choices

When we introduced an else case into Exercise 15.1.4, we were effectively changing the
contract and data analysis: the function no longer took in one of three specific strings,
but rather those three or “any other string”. In other words, the type definitions became
something like

; A safe-greeting is one of four possibilities: "good morning",

; "good afternoon", "good evening", or any other string.

; A safe-answer is one of four possibilities: "I need coffee",

; "I need a nap", "bedtime!", or "huh?".

Technically, we could write the contract as

; replay : string -> safe-answer

because the function now accepts any string, but it’s more useful to think of it as

; reply : safe-greeting -> safe-answer

since safe-greeting ’s four possibilities tell us how to choose test cases: we need a "good

morning", a "good afternoon", a "good evening", and some other string. The four
possibilities of the input type also tell us how to write the body of the function: a four-
way conditional, checking whether the input is "good morning", "good afternoon",
"good evening", or any other string (which we can handle naturally using else); we
need only to fill in the answers.

Alternatively, we could use the four cases of the result type safe-answer to tell us
that we’ll need four test cases — one returning each of the four legal answers. The
outventory gives us a conditional with four clauses, with answers "I need coffee", "I
need a nap", "bedtime!", and "huh?"; we need only to fill in the questions.

16.5 A bigger, better design recipe

At this point I often find that students get confused between designing a function and
designing a data type. Indeed, designing a function often requires that you design one
or more data types first. The recipe in Figure 16.5 starts with the difference between
function and data type, and then gives a series of steps for each one.

Exercise 16.5.1 Re-do some of the problems from Chapter 15 in this style.

16.6 Review of important words and concepts

When we write a function that makes decisions, it often helps to think of the input and/or
output type as a new data type defined by choices. This helps us choose test cases, and
helps again in getting from a function skeleton to a complete function body.



16.6. REVIEW 237

Figure 16.1: Design recipe, with definition by choices
Are you defining a function or a type?

Functions are analogous to verbs
in human languages: they represent
actions that happen to particular
things (the arguments) at a partic-
ular time.
For example, + and beside

are predefined functions, while
checkerboard2 and cube are
user-defined functions.

Data types are like improper nouns (e.g. “com-
puter”, “student”, “program”) in human lan-
guages: they represent a kind of thing. Racket’s
built-in data types include “number”, “boolean”,
“string”, “image”, etc. and you can define others
like “bank-balance” and “letter-grade”.
A data type is not “called” at any particular time
on any particular arguments, and it doesn’t “re-
turn” a result; it just is.

Write a contract (and perhaps a
purpose statement)

Identify the choices: how many distinct cate-
gories or values are there, and how can you detect
each one? Are there borderlines to worry about?

Write examples of function calls,
with correct answers, e.g. using
check-expect. If you have a tem-
plate for the input or output data
type, use it as a starting point for
the examples, skeleton and inven-
tory.

Write examples of the new data type, one for
each category. You don’t need “correct answers”,
since the examples are the “correct answers”.
If your data type consists of sub-ranges, make
sure to include examples at the boundaries.

Write a function skeleton and in-
ventory. If you have a template for
the input or output data type, use
it as a starting point.

If you expect to write more than one function
taking in the new type, write an inventory

template.
If you expect to write more than one function
returning the new type, write an outventory

template.
Fill in the function body. If it
isn’t obvious how to put together
the pieces to get a right answer, try
an inventory with values first.
Proofread for errors that you can
spot yourself
Check Syntax for syntax errors
that the computer can spot
Test the program to make sure it
produces correct answers



238 CHAPTER 16. NEW TYPES AND TEMPLATES

If we expect to be writing several functions with the same input type or the same
output type, it may save us time to write a function template: a function skeleton, with
an inventory and/or outventory, but no actual code. A template should say as much
as you can say about the function by knowing only its input and output types, but not
knowing what specific problem it’s supposed to solve. Once you’ve written one, you can
copy-and-paste it as a starting point for every function you need to write that has that
input type or that output type.

16.7 Reference

No new functions or syntax rules were introduced in this chapter.


